The Regularization of a Logic

Michele Pra Baldi (with S.Bonzio and T.Moraschini)

University of Padova

September 26, 2017 AILA Meeting, Padova

Contents

The regularisation of a logic: models and axiomatization

Logics as substitution invariant consequence relations

Definition

Let **F***m* the term algebra built up with countably many variables. A logic is a consequence relation $\vdash \subseteq \mathcal{P}(Fm) \times Fm$, which is substitution-invariant in the sense that for every substitution $\sigma : Fm \to Fm$,

if $\Gamma \vdash \varphi$, then $\sigma \Gamma \vdash \sigma \varphi$.

Matrices

Definition

- A (logical) matrix is a pair (A, F) where A is an algebra and F ⊆ A (F is called the filter of the matrix).
- Every class of matrices M induces a logic as follows:

Matrices

Definition

A (logical) matrix is a pair (A, F) where A is an algebra and F ⊆ A (F is called the filter of the matrix).

② Every class of matrices M induces a logic as follows:

 $\Gamma \vdash_{\mathsf{M}} \varphi \iff \text{for every } \langle \boldsymbol{A}, F \rangle \in \mathsf{M} \text{ and hom } v \colon \boldsymbol{Fm} \to \boldsymbol{A}$ if $v[\Gamma] \subseteq F$, then $v(\varphi) \in F$.

Matrices

Definition

- A (logical) matrix is a pair (A, F) where A is an algebra and F ⊆ A (F is called the filter of the matrix).
- ② Every class of matrices M induces a logic as follows:

$$\Gamma \vdash_{\mathsf{M}} \varphi \iff \text{for every } \langle \mathbf{A}, F \rangle \in \mathsf{M} \text{ and hom } v \colon \mathbf{Fm} \to \mathbf{A}$$

if $v[\Gamma] \subseteq F$, then $v(\varphi) \in F$.

Example

 Let K be the variety of Boolean algebras. Define ⊢_K as the logic induced by the following class of matrices:

 $\{\langle \boldsymbol{A}, \boldsymbol{F} \rangle : \boldsymbol{A} \in \mathsf{K}, \boldsymbol{F} \text{ is a lattice filter on } \boldsymbol{A} \}.$

 \vdash_{K} coincides with \vdash_{CL} .

Matrices as models of logics

Definition

Let \vdash be a logic.

• A matrix $\langle \boldsymbol{A}, \boldsymbol{F} \rangle$ is a model of a logic \vdash when

 $\begin{array}{l} \text{if } \Gamma \vdash \varphi, \text{ then for every hom } v \colon \pmb{Fm} \to \pmb{A} \\ \text{if } v[\Gamma] \subseteq \pmb{F}, \text{ then } v(\varphi) \in \pmb{F}. \end{array}$

Matrices as models of logics

Definition

- $\mathsf{Let} \vdash \mathsf{be} \mathsf{ a } \mathsf{logic}.$
 - A matrix $\langle \boldsymbol{A}, \boldsymbol{F} \rangle$ is a model of a logic \vdash when

```
 \begin{array}{l} \text{if } \Gamma \vdash \varphi, \text{ then for every hom } v \colon \pmb{Fm} \to \pmb{A} \\ \text{if } v[\Gamma] \subseteq \pmb{F}, \text{ then } v(\varphi) \in \pmb{F}. \end{array}
```

⊢ is complete with respect to a class of matrices M when ⊢=⊢_M.
We set Mod(⊢) := {⟨A, F⟩ : ⟨A, F⟩ is a model of ⊢}.

Matrices as models of logics

Definition

- Let \vdash be a logic.
 - A matrix $\langle \boldsymbol{A}, \boldsymbol{F} \rangle$ is a model of a logic \vdash when

```
 \begin{array}{l} \text{if } \Gamma \vdash \varphi, \text{ then for every hom } v \colon \pmb{Fm} \to \pmb{A} \\ \text{if } v[\Gamma] \subseteq \pmb{F}, \text{ then } v(\varphi) \in \pmb{F}. \end{array}
```

• \vdash is complete with respect to a class of matrices M when $\vdash = \vdash_M$.

• We set $Mod(\vdash) := \{ \langle \boldsymbol{A}, \boldsymbol{F} \rangle : \langle \boldsymbol{A}, \boldsymbol{F} \rangle \text{ is a model of } \vdash \}.$

• Remark: Mod(⊢) is a very artificial class of matrices, since

 $\langle \boldsymbol{A}, \boldsymbol{A} \rangle \in \mathsf{Mod}(\vdash)$ for every algebra \boldsymbol{A} .

• We need a process to tame the matrices in $Mod(\vdash)$:

• We need a process to tame the matrices in $Mod(\vdash)$:

Definition Let \boldsymbol{A} be an algebra and $F \subseteq A$.

• We need a process to tame the matrices in $Mod(\vdash)$:

Definition

- Let **A** be an algebra and $F \subseteq A$.
 - **1** A congruence $\theta \in \text{Con} \boldsymbol{A}$ is compatible with F when

$$\text{ if } a \in F \text{ and } \langle a, b \rangle \in \theta \text{, then } b \in F.$$

• We need a process to tame the matrices in Mod(⊢):

Definition

- Let **A** be an algebra and $F \subseteq A$.
 - A congruence $\theta \in Con A$ is compatible with F when

if $a \in F$ and $\langle a, b \rangle \in \theta$, then $b \in F$.

2 The largest such congruence (it exists!) is called the Leibniz congruence of F (over A), and is denoted by $\Omega^A F$.

• We need a process to tame the matrices in Mod(⊢):

Definition

- Let **A** be an algebra and $F \subseteq A$.
 - A congruence $\theta \in Con A$ is compatible with F when

if
$$a \in F$$
 and $\langle a, b \rangle \in \theta$, then $b \in F$.

- 2 The largest such congruence (it exists!) is called the Leibniz congruence of F (over A), and is denoted by $\Omega^A F$.
- The Suszko congruence of F (over A) is $\widetilde{\Omega}^{A}F := \{\bigcap \Omega G : G \supseteq F \text{ and } G \text{ is a filter} \}$

Reduced models

Definition

Let \vdash be a logic.

① The class of Leibniz reduced models of \vdash is

$$\mathsf{Mod}^{\ast}(\vdash) \coloneqq \{ \langle \boldsymbol{A}, \boldsymbol{F} \rangle \in \mathsf{Mod}(\vdash) : \boldsymbol{\Omega}^{\boldsymbol{A}} \boldsymbol{F} = \mathsf{Id}_{\boldsymbol{A}} \}$$

② The class of Suszko reduced models of \vdash is

$$\mathsf{Mod}^{\mathsf{Su}}(\vdash) \coloneqq \{ \langle \boldsymbol{A}, F \rangle \in \mathsf{Mod}(\vdash) : \widetilde{\Omega}^{\boldsymbol{A}}F = \mathsf{Id}_{\boldsymbol{A}} \}$$

Reduced models

Definition

Let \vdash be a logic.

• The class of Leibniz reduced models of \vdash is

$$\mathsf{Mod}^{*}(\vdash) \coloneqq \{ \langle \boldsymbol{A}, \boldsymbol{F} \rangle \in \mathsf{Mod}(\vdash) : \boldsymbol{\Omega}^{\boldsymbol{A}} \boldsymbol{F} = \mathsf{Id}_{\boldsymbol{A}} \}$$

2 The class of Suszko reduced models of \vdash is

$$\mathsf{Mod}^{\mathsf{Su}}(\vdash) \coloneqq \{ \langle \boldsymbol{A}, F \rangle \in \mathsf{Mod}(\vdash) : \widetilde{\Omega}^{\boldsymbol{A}}F = \mathsf{Id}_{\boldsymbol{A}} \}$$

• In most cases, reduced models (as opposed to arbitrary models) of a logic are its intended matrix semantics.

A direct system of algebras consists in

1 A join-semilattice
$$I = \langle I, \lor \rangle$$
;

2 A family of algebras $\{A_i : i \in I\}$ with disjoint universes;

3 A homomorphism $f_{ij}: \mathbf{A}_i \to \mathbf{A}_j$, for every $i, j \in I$ such that $i \leq j$ such that f_{ii} is the identity map for every $i \in I$, and if $i \leq j \leq k$, then $f_{ik} = f_{jk} \circ f_{ij}$.

Let X be a direct system of algebras. The *Płonka sum* over X is a new algebra $\mathcal{P}_l(X)$ s.t.

• the universe of $\mathcal{P}_{I}(X) = \bigcup_{i \in I} A_{i}$

② for every *n*-ary basic operation *f* on *A*_{*i*} and $a_1, \ldots, a_n \in \bigcup_{i \in I} A_i$, we set

$$f^{\mathcal{P}_l(\boldsymbol{A}_i)_{i\in I}}(a_1,\ldots,a_n)\coloneqq f^{\boldsymbol{A}_j}(f_{i_1j}(a_1),\ldots,f_{i_nj}(a_n))$$

where $a_1 \in A_{i_1}, \ldots, a_n \in A_{i_n}$ and $j = i_1 \vee \cdots \vee i_n$.

Let X be a direct system of algebras. The *Płonka sum* over X is a new algebra $\mathcal{P}_l(X)$ s.t.

• the universe of $\mathcal{P}_{I}(X) = \bigcup_{i \in I} A_{i}$

② for every *n*-ary basic operation *f* on *A*_{*i*} and $a_1, \ldots, a_n \in \bigcup_{i \in I} A_i$, we set

$$f^{\mathcal{P}_l(\boldsymbol{A}_i)_{i\in l}}(a_1,\ldots,a_n)\coloneqq f^{\boldsymbol{A}_j}(f_{i_1j}(a_1),\ldots,f_{i_nj}(a_n))$$

where $a_1 \in A_{i_1}, \ldots, a_n \in A_{i_n}$ and $j = i_1 \lor \cdots \lor i_n$.

Example!

Płonka sums over a direct system of algebras

We extend the previous definitions to logical matrices as follows.

Definition

A direct system of matrices consists in

- A join-semilattice $I = \langle I, \lor \rangle$.
- **2** A family of matrices $\{\langle \mathbf{A}_i, F_i \rangle : i \in I\}$.
- **③** A homomorphism f_{ij} : $A_i → A_j$ such that $f_{ij}[F_i] \subseteq F_j$, for every $i, j \in I$ such that $i \leq j$.

Given directed system of matrices X as above, we set

$$\mathcal{P}_{I}(X) \coloneqq \langle \mathcal{P}_{I}(\mathbf{A}_{i})_{i \in I}, \bigcup_{i \in I} F_{i} \rangle.$$

The matrix $\mathcal{P}_{I}(X)$ is the *Płonka sum* of the direct system of matrices X. Given a class M of matrices, we denote by $\mathcal{P}_{I}(M)$ the class of all Płonka sums of directed systems of matrices in M.

2 The regularisation of a logic: models and axiomatization

Let \vdash be a logic. The logic of variable inclusion of \vdash (or its *regularization*) is the relation $\vdash^r \subseteq \mathcal{P}(Fm) \times Fm$ defined as follows:

 $\Gamma \vdash^{r} \varphi \iff$ there is $\Gamma' \subseteq \Gamma$ s.t. $Var(\Gamma') \subseteq Var(\varphi)$ and $\Gamma' \vdash \varphi$.

Let \vdash be a logic. The logic of variable inclusion of \vdash (or its *regularization*) is the relation $\vdash^r \subseteq \mathcal{P}(Fm) \times Fm$ defined as follows:

 $\Gamma \vdash^{r} \varphi \iff$ there is $\Gamma' \subseteq \Gamma$ s.t. $Var(\Gamma') \subseteq Var(\varphi)$ and $\Gamma' \vdash \varphi$.

Example

Let $\vdash_{C\mathcal{L}}$ be classical logic. Its logic of variable inclusion $\vdash_{C\mathcal{L}}^{r}$ is the logic \vdash_{PWK} known as Paraconsistent Weak Kleene logic.

Models

Lemma (Soundness)

Let \vdash be a logic and X be a direct systems of models of \vdash . Then $\mathcal{P}_{l}(X)$ is a model of \vdash^{r} .

Models

Lemma (Soundness)

Let \vdash be a logic and X be a direct systems of models of \vdash . Then $\mathcal{P}_{l}(X)$ is a model of \vdash^{r} .

Theorem (Completeness)

Let \vdash be a logic and M be a class of matrices containing the matrix $\langle \mathbf{1}, \{1\} \rangle$. If \vdash is complete w.r.t. M, then \vdash^r is complete w.r.t. $\mathcal{P}_{l}(\mathsf{M})$.

Models

Lemma (Soundness)

Let \vdash be a logic and X be a direct systems of models of \vdash . Then $\mathcal{P}_{l}(X)$ is a model of \vdash^{r} .

Theorem (Completeness)

Let \vdash be a logic and M be a class of matrices containing the matrix $\langle \mathbf{1}, \{1\} \rangle$. If \vdash is complete w.r.t. M, then \vdash^r is complete w.r.t. $\mathcal{P}_l(M)$.

Corollary

Let \vdash be a logic. Its logic of variable inclusion \vdash^r is complete w.r.t. any of the following classes of matrices:

 $\mathcal{P}_{l}(\mathsf{Mod}(\vdash)) \quad \mathcal{P}_{l}(\mathsf{Mod}^{*}(\vdash)) \quad \mathcal{P}_{l}(\mathsf{Mod}^{Su}(\vdash)).$

Definition (Essentially Płonka)

A logic \vdash has a partition function is there is a formula $\pi(x, y)$ in which the variables x and y really occur such that $x \vdash \pi(x, y)$ and the following equations hold in $\{A : \exists F \subseteq A \text{ s.t. } \langle A, F \rangle \in \text{Mod}^{\text{Su}}(\vdash)\}$ for every *n*-ary connective *f*:

Definition (Essentially Płonka)

A logic \vdash has a partition function is there is a formula $\pi(x, y)$ in which the variables x and y really occur such that $x \vdash \pi(x, y)$ and the following equations hold in $\{A : \exists F \subseteq A \text{ s.t. } \langle A, F \rangle \in \text{Mod}^{\text{Su}}(\vdash)\}$ for every *n*-ary connective *f*:

Note that in every logic with a lattice reduct the term $\pi(x, y) = x \land (x \lor y)$ is a partition function!

Hilbert-style axiomatisation

Definition

Let \mathcal{H} be a Hilbert-style calculus with finite rules, which determines a logic \vdash with a partition function π . Let \mathcal{H}^r be the Hilbert-style calculus given by the following rules:

$$\emptyset \rhd \psi \tag{1}$$

$$\gamma_1, \dots, \gamma_n \rhd \pi(\varphi, \pi(\gamma_1, \pi(\gamma_2, \dots, \pi(\gamma_{n-1}, \gamma_n) \dots)))$$
(2)
$$x \rhd \pi(x, y)$$
(3)

$$\chi(\delta, \vec{z}) \lhd \rhd \chi(\epsilon, \vec{z}) \tag{4}$$

for every

(i) $\emptyset \triangleright \psi$ rule in \mathcal{H} ;

(ii) $\gamma_1, \ldots, \gamma_n \rhd \varphi$ rule in \mathcal{H} ;

(iii) $\epsilon \approx \delta$ equation in the definition of partition function, and formula $\chi(\mathbf{v}, \mathbf{z})$.

Hilbert-style axiomatization

Theorem

Let \vdash be a logic defined by a Hilbert-style calculus with finite rules \mathcal{H} . Then \mathcal{H}^r is a complete Hilbert-style calculus for \vdash^r .

Example

Hilbert-calculus for \vdash_{CL} :

Let \vdash be a logic defined by a Hilbert-style calculus with finite rules \mathcal{H} . Then \mathcal{H}^r is a complete Hilbert-style calculus for \vdash^r .

Example

Hilbert-calculus for \vdash_{CI} :

 $x, x \to y \triangleright y$

Hilbert-calculus for $\vdash_{CI}^{r} = \vdash_{PWK}$:

- $\bigcirc > x \to (y \to x)$
- $(x \rightarrow z))$

- (1-3) as axioms
- $x, x \to y \triangleright y \land (y \lor (x \land (x \lor x \to y)))$
- $x \triangleright x \land (x \lor y)$

•
$$\chi(\delta, \vec{z}) \lhd \triangleright \chi(\epsilon, \vec{z}).$$

Let \vdash be a logic with a partition function π , and let X be a directed system of matrices in Mod^{Su}(\vdash). TFAE:

- **●** $\mathcal{P}_{l}(X) \in \mathrm{Mod}^{Su}(\vdash^{r}).$
- **2** For every $n, i \in I$ such that $\langle \mathbf{A}_n, F_n \rangle$ is trivial and n < i, there exists *j* ∈ *I* s.t. $n \le j, i \le j$ and \mathbf{A}_j is non-trivial.

Let \vdash be a logic with a partition function π , and let X be a directed system of matrices in Mod^{Su}(\vdash). TFAE:

- $\mathcal{P}_{l}(X) \in \mathrm{Mod}^{Su}(\vdash^{r}).$
- **2** For every $n, i \in I$ such that $\langle \mathbf{A}_n, F_n \rangle$ is trivial and n < i, there exists *j* ∈ *I* s.t. $n \le j, i \nleq j$ and \mathbf{A}_j is non-trivial.

The theorem identifies the Suszko reduced models of \vdash^r , which can be expressed in terms of Płonka sums of Suszko reduced models of \vdash . Is it true that all Suszko models of \vdash^r are of this kind? In general, the answer is no.

Let \vdash be a logic with a partition function π , and let X be a directed system of matrices in Mod^{Su}(\vdash). TFAE:

- $\mathcal{P}_{l}(X) \in \mathrm{Mod}^{Su}(\vdash^{r}).$
- **2** For every $n, i \in I$ such that $\langle \mathbf{A}_n, F_n \rangle$ is trivial and n < i, there exists *j* ∈ *I* s.t. $n \le j, i \le j$ and \mathbf{A}_j is non-trivial.

The theorem identifies the Suszko reduced models of \vdash^r , which can be expressed in terms of Płonka sums of Suszko reduced models of \vdash . Is it true that all Suszko models of \vdash^r are of this kind? In general, the answer is no.

However....

Contents

The regularisation of a logic: models and axiomatization

Refined characterisation of Mod^{Su}(⊢^r) for ⊢ possessing inconsistency terms

- Refined characterisation of Mod^{Su}(⊢^r) for ⊢ possessing inconsistency terms
- Full characterisation of $Mod^{Su}(\vdash^{r})$ for \vdash finitary and equivalential
- Classification of \vdash^r within the Leibniz Hierarchy

- Refined characterisation of Mod^{Su}(⊢^r) for ⊢ possessing inconsistency terms
- Full characterisation of $Mod^{Su}(\vdash^{r})$ for \vdash finitary and equivalential
- Classification of \vdash^r within the Leibniz Hierarchy
- Algebraizability of Gentzen systems associated with \vdash^r

Thank you!