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Logics as substitution invariant consequence relations

Definition
Let Fm the term algebra built up with countably many variables. A logic is
a consequence relation `⊆ P(Fm)× Fm, which is substitution-invariant in
the sense that for every substitution σ : Fm → Fm,

if Γ ` ϕ, then σΓ ` σϕ.
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Matrices

Definition
1 A (logical) matrix is a pair 〈A,F 〉 where A is an algebra and F ⊆ A

(F is called the filter of the matrix).
2 Every class of matrices M induces a logic as follows:

Γ `M ϕ⇐⇒ for every 〈A,F 〉 ∈ M and hom v : Fm → A
if v [Γ ] ⊆ F , then v(ϕ) ∈ F .

Example
Let K be the variety of Boolean algebras. Define `K as the logic
induced by the following class of matrices:

{〈A,F 〉 : A ∈ K,F is a lattice filter on A}.

`K coincides with `CL.
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Matrices as models of logics

Definition
Let ` be a logic.

A matrix 〈A,F 〉 is a model of a logic ` when

if Γ ` ϕ, then for every hom v : Fm → A
if v [Γ ] ⊆ F , then v(ϕ) ∈ F .

` is complete with respect to a class of matrices M when `=`M.
We set Mod(`) := {〈A,F 〉 : 〈A,F 〉 is a model of `}.

Remark: Mod(`) is a very artificial class of matrices, since

〈A,A〉 ∈ Mod(`) for every algebra A.
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Leibniz and Suszko congruence

We need a process to tame the matrices in Mod(`):

Definition
Let A be an algebra and F ⊆ A.

1 A congruence θ ∈ ConA is compatible with F when

if a ∈ F and 〈a, b〉 ∈ θ, then b ∈ F .

2 The largest such congruence (it exists!) is called the Leibniz
congruence of F (over A), and is denoted by ΩAF .

3 The Suszko congruence of F (over A) is∼
ΩAF := {

⋂
ΩG : G ⊇ F and G is a filter}
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Reduced models

Definition
Let ` be a logic.

1 The class of Leibniz reduced models of ` is

Mod∗(`) :={〈A,F 〉 ∈ Mod(`) : ΩAF = IdA}

2 The class of Suszko reduced models of ` is

ModSu(`) :={〈A,F 〉 ∈ Mod(`) : ∼ΩAF = IdA}

In most cases, reduced models (as opposed to arbitrary models) of a
logic are its intended matrix semantics.
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Direct systems of algebras

Definition
A direct system of algebras consists in

1 A join-semilattice I = 〈I ,∨〉;
2 A family of algebras {Ai : i ∈ I} with disjoint universes;
3 A homomorphism fij : Ai → Aj , for every i , j ∈ I such that i ≤ j

such that fii is the identity map for every i ∈ I , and if i ≤ j ≤ k , then
fik = fjk ◦ fij .
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Płonka sums over a direct system of algebras

Definition
Let X be a direct system of algebras. The Płonka sum over X is a new
algebra Pl(X ) s.t.

1 the universe of Pl(X ) =
⋃

i∈I Ai

2 for every n-ary basic operation f on Ai and a1, . . . , an ∈
⋃

i∈I Ai , we
set

f Pl (Ai )i∈I (a1, . . . , an) := f Aj (fi1j(a1), . . . , finj(an))

where a1 ∈ Ai1 , . . . , an ∈ Ain and j = i1 ∨ · · · ∨ in.

Example!
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Płonka sums over a direct system of algebras

We extend the previous definitions to logical matrices as follows.

Definition
A direct system of matrices consists in

1 A join-semilattice I = 〈I ,∨〉.
2 A family of matrices {〈Ai ,Fi 〉 : i ∈ I}.
3 A homomorphism fij : Ai → Aj such that fij [Fi ] ⊆ Fj , for every i , j ∈ I

such that i ≤ j .

Given directed system of matrices X as above, we set

Pl(X ) := 〈Pl(Ai )i∈I ,
⋃
i∈I

Fi 〉.

The matrix Pl(X ) is the Płonka sum of the direct system of matrices X .
Given a class M of matrices, we denote by Pl(M) the class of all Płonka
sums of directed systems of matrices in M.
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Definition and examples

Definition
Let ` be a logic. The logic of variable inclusion of ` (or its regularization)
is the relation `r⊆ P(Fm)× Fm defined as follows:

Γ `r ϕ⇐⇒ there is Γ ′ ⊆ Γ s.t. Var(Γ ′) ⊆ Var(ϕ) and Γ ′ ` ϕ.

Example
Let `CL be classical logic. Its logic of variable inclusion `rCL is the logic
`PWK known as Paraconsistent Weak Kleene logic.
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Models

Lemma (Soundness)

Let ` be a logic and X be a direct systems of models of `. Then Pl(X ) is
a model of `r .

Theorem (Completeness)

Let ` be a logic and M be a class of matrices containing the matrix
〈1, {1}〉. If ` is complete w.r.t. M, then `r is complete w.r.t. Pl(M).

Corollary

Let ` be a logic. Its logic of variable inclusion `r is complete w.r.t. any of
the following classes of matrices:

Pl(Mod(`)) Pl(Mod∗(`)) Pl(ModSu(`)).
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Logics with a partition function

Definition (Essentially Płonka)

A logic ` has a partition function is there is a formula π(x , y) in which the
variables x and y really occur such that x ` π(x , y) and the following
equations hold in {A : ∃F ⊆ A s.t. 〈A,F 〉 ∈ ModSu(`)} for every n-ary
connective f :

1 A � π(x , x) ≈ x

2 A � π(π(x , y), z) ≈ π(x , π(y , z))

3 A � π(x , π(y , z)) ≈ π(x , π(z , y))

4 A � π(f (x1, ..., xn), y) ≈ f (π(x1, y), ..., π(xn, y))

5 A � π(f (x1, ..., xn), xi ) ≈ f (x1, ..., xn), i ∈ {1, ..., n}
6 A � π(y , f (x1, ..., xn)) ≈ π(y , f (π(y , x1), ..., π(y , xn)).
7 A � π(x , f (x , ..., x)) ≈ x .

Note that in every logic with a lattice reduct the term
π(x , y) = x ∧ (x ∨ y) is a partition function!
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Hilbert-style axiomatisation

Definition
Let H be a Hilbert-style calculus with finite rules, which determines a logic
` with a partition function π. Let Hr be the Hilbert-style calculus given by
the following rules:

∅� ψ (1)
γ1, . . . , γn � π(ϕ, π(γ1, π(γ2, . . . , π(γn−1, γn) . . . ))) (2)

x � π(x , y) (3)
χ(δ, ~z)�� χ(ε, ~z) (4)

for every
(i) ∅� ψ rule in H;
(ii) γ1, . . . , γn � ϕ rule in H;
(iii) ε ≈ δ equation in the definition of partition function, and formula

χ(v , ~z).
15 / 20



Hilbert-style axiomatization

Theorem

Let ` be a logic defined by a Hilbert-style calculus with finite rules H.
Then Hr is a complete Hilbert-style calculus for `r .

Example
Hilbert-calculus for `CL:

1 �x → (y → x)

2 �x → (y → z)→ ((x → y)→
(x → z))

3 �(x → y)→ (¬y → ¬x)
4 x , x → y � y

Hilbert-calculus for `rCL=`PWK:

(1-3) as axioms
x , x → y�y∧(y∨(x∧(x∨x → y)))

x � x ∧ (x ∨ y)

χ(δ, ~z) ��χ(ε, ~z).
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Suszko reduced models

Theorem

Let ` be a logic with a partition function π, and let X be a directed system
of matrices in ModSu(`). TFAE:

1 Pl(X ) ∈ ModSu(`r ).
2 For every n, i ∈ I such that 〈An,Fn〉 is trivial and n < i , there exists

j ∈ I s.t. n ≤ j , i � j and Aj is non-trivial.

The theorem identifies the Suszko reduced models of `r , which can be
expressed in terms of Płonka sums of Suszko reduced models of `. Is it true
that all Suszko models of `r are of this kind? In general, the answer is no.

However....
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Further results

Refined characterisation of ModSu(`r ) for ` possessing inconsistency
terms

Full characterisation of ModSu(`r ) for ` finitary and equivalential
Classification of `r within the Leibniz Hierarchy
Algebraizability of Gentzen systems associated with `r
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Thank you!
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